Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons.

Identifieur interne : 000741 ( Main/Exploration ); précédent : 000740; suivant : 000742

Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons.

Auteurs : Matthew J. Moscou [États-Unis] ; Nick Lauter ; Brian Steffenson ; Roger P. Wise

Source :

RBID : pubmed:21829384

Descripteurs français

English descriptors

Abstract

Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host-pathogen interaction with enhancement of R-gene mediated resistance.

DOI: 10.1371/journal.pgen.1002208
PubMed: 21829384
PubMed Central: PMC3145622


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons.</title>
<author>
<name sortKey="Moscou, Matthew J" sort="Moscou, Matthew J" uniqKey="Moscou M" first="Matthew J" last="Moscou">Matthew J. Moscou</name>
<affiliation wicri:level="4">
<nlm:affiliation>Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, Iowa, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, Iowa</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
<settlement type="city">Ames (Iowa)</settlement>
</placeName>
<orgName type="university">Université d'État de l'Iowa</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lauter, Nick" sort="Lauter, Nick" uniqKey="Lauter N" first="Nick" last="Lauter">Nick Lauter</name>
</author>
<author>
<name sortKey="Steffenson, Brian" sort="Steffenson, Brian" uniqKey="Steffenson B" first="Brian" last="Steffenson">Brian Steffenson</name>
</author>
<author>
<name sortKey="Wise, Roger P" sort="Wise, Roger P" uniqKey="Wise R" first="Roger P" last="Wise">Roger P. Wise</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21829384</idno>
<idno type="pmid">21829384</idno>
<idno type="doi">10.1371/journal.pgen.1002208</idno>
<idno type="pmc">PMC3145622</idno>
<idno type="wicri:Area/Main/Corpus">000739</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000739</idno>
<idno type="wicri:Area/Main/Curation">000739</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000739</idno>
<idno type="wicri:Area/Main/Exploration">000739</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons.</title>
<author>
<name sortKey="Moscou, Matthew J" sort="Moscou, Matthew J" uniqKey="Moscou M" first="Matthew J" last="Moscou">Matthew J. Moscou</name>
<affiliation wicri:level="4">
<nlm:affiliation>Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, Iowa, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, Iowa</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
<settlement type="city">Ames (Iowa)</settlement>
</placeName>
<orgName type="university">Université d'État de l'Iowa</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lauter, Nick" sort="Lauter, Nick" uniqKey="Lauter N" first="Nick" last="Lauter">Nick Lauter</name>
</author>
<author>
<name sortKey="Steffenson, Brian" sort="Steffenson, Brian" uniqKey="Steffenson B" first="Brian" last="Steffenson">Brian Steffenson</name>
</author>
<author>
<name sortKey="Wise, Roger P" sort="Wise, Roger P" uniqKey="Wise R" first="Roger P" last="Wise">Roger P. Wise</name>
</author>
</analytic>
<series>
<title level="j">PLoS genetics</title>
<idno type="eISSN">1553-7404</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Basidiomycota (genetics)</term>
<term>Gene Expression Regulation, Plant (immunology)</term>
<term>Genes, Plant (MeSH)</term>
<term>Hordeum (genetics)</term>
<term>Hordeum (immunology)</term>
<term>Hordeum (microbiology)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Immunity (genetics)</term>
<term>Plant Stems (genetics)</term>
<term>Plant Stems (immunology)</term>
<term>Plant Stems (microbiology)</term>
<term>Quantitative Trait Loci (genetics)</term>
<term>Seedlings (genetics)</term>
<term>Seedlings (immunology)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Allèles (MeSH)</term>
<term>Basidiomycota (génétique)</term>
<term>Gènes de plante (MeSH)</term>
<term>Hordeum (génétique)</term>
<term>Hordeum (immunologie)</term>
<term>Hordeum (microbiologie)</term>
<term>Immunité des plantes (génétique)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Locus de caractère quantitatif (génétique)</term>
<term>Phénotype (MeSH)</term>
<term>Plant (génétique)</term>
<term>Plant (immunologie)</term>
<term>Régulation de l'expression des gènes végétaux (immunologie)</term>
<term>Tiges de plante (génétique)</term>
<term>Tiges de plante (immunologie)</term>
<term>Tiges de plante (microbiologie)</term>
<term>Transcription génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
<term>Hordeum</term>
<term>Plant Immunity</term>
<term>Plant Stems</term>
<term>Quantitative Trait Loci</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Basidiomycota</term>
<term>Hordeum</term>
<term>Immunité des plantes</term>
<term>Locus de caractère quantitatif</term>
<term>Plant</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Hordeum</term>
<term>Plant</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Hordeum</term>
<term>Plant Stems</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Hordeum</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Hordeum</term>
<term>Plant Stems</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Genes, Plant</term>
<term>Host-Pathogen Interactions</term>
<term>Phenotype</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Allèles</term>
<term>Gènes de plante</term>
<term>Interactions hôte-pathogène</term>
<term>Phénotype</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host-pathogen interaction with enhancement of R-gene mediated resistance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21829384</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>12</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1553-7404</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>PLoS genetics</Title>
<ISOAbbreviation>PLoS Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons.</ArticleTitle>
<Pagination>
<MedlinePgn>e1002208</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pgen.1002208</ELocationID>
<Abstract>
<AbstractText>Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host-pathogen interaction with enhancement of R-gene mediated resistance.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Moscou</LastName>
<ForeName>Matthew J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, Iowa, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lauter</LastName>
<ForeName>Nick</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Steffenson</LastName>
<ForeName>Brian</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wise</LastName>
<ForeName>Roger P</ForeName>
<Initials>RP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Genet</MedlineTA>
<NlmUniqueID>101239074</NlmUniqueID>
<ISSNLinking>1553-7390</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001467" MajorTopicYN="N">Hordeum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057865" MajorTopicYN="N">Plant Immunity</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="N">Quantitative Trait Loci</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="Y">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>11</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>8</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>8</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21829384</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pgen.1002208</ArticleId>
<ArticleId IdType="pii">PGENETICS-D-10-00350</ArticleId>
<ArticleId IdType="pmc">PMC3145622</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:93-114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19012536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroinformatics. 2003;1(4):299-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Sep;113(5):847-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16832646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2008 Aug;8(3):187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18196301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Mar;15(3):760-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Mar;175(3):1441-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 May;141(1):257-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):142-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19126706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 May;137(1):289-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7914503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Sep;3(9):1687-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17941713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2007;45:399-436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Aug;11(4):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18602859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19171053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Aug;132(4):1901-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12913147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Dec 11;326(5959):1501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19933106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2006 Apr;6(2):143-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16450154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14970-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18812501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jan;53(1):90-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2005 Mar 1;6(2):99-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 26;318(5850):648-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17962565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Apr;157(4):1683-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11290723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 20;422(6929):297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12646919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2007;45:101-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17352660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Nov;7(11):862-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17047685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2005 Jul;21(7):377-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15908034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2007;45:329-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17480183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Dec;40(5):633-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15546348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1997 Mar 24;136(6):1307-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9087445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2006 Dec 29;2(12):e222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17196041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 26;296(5568):752-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11923494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Feb;23(2):471-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21343415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Feb;13(2):72-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18262820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2514-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15319481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Nov;4(11):e1000260</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19008955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2001 Jul;17(7):388-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Oct;56(2):287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18643973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:582</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19961604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Jun;24(6):694-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21323465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):1132-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17449647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):960-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2008 Jul;117(2):261-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18542913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9328-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12077318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 26;318(5850):645-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17962564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Apr 1;8(7):977-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19270526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Apr;136(4):1457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8013918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17645808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Feb;15(2):317-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:629</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21070652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Dec 11;326(5959):1509-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19933107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Oct;99(10):1135-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19740026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Nov;138(3):963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7851788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Apr 15;6(4):e83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18416601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1982 May 28;216(4549):993-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17809072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2010 Jan;8(1):10-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20055957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(1):e8598</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20066049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jun;16(6):787-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16702412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Apr;46(1):34-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16553894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Aug 12;430(7001):743-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15269782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Sep;14(9):479-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19716748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15718-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Apr;42(2):201-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15807783</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Iowa</li>
</region>
<settlement>
<li>Ames (Iowa)</li>
</settlement>
<orgName>
<li>Université d'État de l'Iowa</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Lauter, Nick" sort="Lauter, Nick" uniqKey="Lauter N" first="Nick" last="Lauter">Nick Lauter</name>
<name sortKey="Steffenson, Brian" sort="Steffenson, Brian" uniqKey="Steffenson B" first="Brian" last="Steffenson">Brian Steffenson</name>
<name sortKey="Wise, Roger P" sort="Wise, Roger P" uniqKey="Wise R" first="Roger P" last="Wise">Roger P. Wise</name>
</noCountry>
<country name="États-Unis">
<region name="Iowa">
<name sortKey="Moscou, Matthew J" sort="Moscou, Matthew J" uniqKey="Moscou M" first="Matthew J" last="Moscou">Matthew J. Moscou</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000741 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000741 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21829384
   |texte=   Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21829384" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020